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Abstract In this paper, we study the approximate solutions for vector optimization prob-
lem with set-valued functions. The scalar characterization is derived without imposing any
convexity assumption on the objective functions. The relationships between approximate
solutions and weak efficient solutions are discussed. In particular, we prove the connected-
ness of the set of approximate solutions under the condition that the objective functions are
quasiconvex set-valued functions.
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1 Introduction

It is well known that optimization models describe only simplified versions of real prob-
lems, and numerical algorithms generate only approximate solutions. Moreover, the (weak)
efficient solution set may be empty in the noncompact case, whereas approximate solutions
always exist under very weak assumptions. Hence it is interesting and meaningful to have a
theoretical analysis of the notion of approximate solution. The first and most popular concept
was introduced by Kutateladze [10]. Loridan [13] introduced a notion of ε-efficient solutions
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for multiobjective programs (MOP), which was followed by White [21] who proposed several
concepts of approximate solution for MOP. Since then, approximate solutions of MOP have
been examined in the literature by many authors from different points of view. Existence
conditions were developed by Deng [3] and Dutta and Vetriel [4] for convex MOP, while
KKT-type conditions and saddle point conditions were derived by Dutta and Vetriel [4]. Con-
nections between different definitions of approximate solutions were analyzed by Gutierrez
[5], and so on. Tammer [18],1 Tanaka [20], and others studied approximate solutions of vec-
tor optimization problems in general ordered vector spaces. Meanwhile, since optimization
problems with set-valued objective functions are closely related to problems in stochastic
programming, fuzzy programming, optimal control and the duality of vector optimization
problems. Much attention has been paid to approximate solutions for vector optimization
with set-valued functions. For example, Rong and Wu [17] introduced the notion of ε-weak
efficient solution, and investigated scalar, Lagrangian multiplier, and duality properties for
vector optimization problems with cone-subconvexlike set-valued functions based on the
separation theorem of convex sets. Ling [11] gave scalar and Lagrangian multiplier results
for ε-super efficient solution via generalized alternative theorem. It is worthwhile noticing
that these results in [11,17] rely heavily on the separation theorems for convex sets. The
first aim of this paper is to derive the scalar characterization without imposing any convexity
assumption on objective functions. Since numerical algorithms generate only approximate
solutions, the second aim is to discuss the relations between approximate solutions and weak
efficient solutions, which generalize, improve and unify the corresponding results of Dutta
and Vetrivel (see [4, Proposition 2.1]) and Deng (see [3, Proposition 1]). In particular, we
prove the connectedness of the set of approximate solutions for vector optimization problems
with set-valued functions under the assumption that the objective functions are quasiconvex
set-valued functions, which generalize and improve the corresponding results of Helbig [6].

2 Preliminary

Throughout the paper, let X, Y be two Hausdorff locally convex topological vector spaces,
Y ∗ be the topological dual space of Y and C be a closed convex pointed cone in Y with non-
empty interior. A vector ordering in Y associated with the cone C is the relation ≤ defined
by

x ≤ y ⇐⇒ y − x ∈ C.

The dual cone of C is defined as

C∗ = {l ∈ Y ∗ : l(c) ≥ 0, ∀c ∈ C}.
Let M ⊂ Y be an arbitrary nonempty subset, the symbol M, int M , and cone(M) denote

the closure of M , the interior of M , the generated cone of M , respectively. Obviously, when
M is a convex set, cone(M) = ⋃{λx : λ ≥ 0, x ∈ M}.

A nonempty convex set B ⊂ C is said to be a base of C if

(i) 0 	∈ B;
(ii) C = cone(B) = ⋃{λx : λ ≥ 0, x ∈ B}.

It is well known that a cone with a base must be pointed. Further discussions regarding
cones can be found in [8,9].

1 We note that Gerstwitz is actually the same person as Gerth C. and Tammer C.

123



J Glob Optim (2010) 47:1–12 3

Definition 2.1 [19]

(i) A function ϕ : Y → R is monotone if

y1 − y2 ∈ C ⇒ ϕ(y1) ≥ ϕ(y2).

(ii) A function ϕ : Y → R is strictly monotone if

y1 − y2 ∈ int C ⇒ ϕ(y1) > ϕ(y2).

Remark 2.1
(i) If ϕ is strictly monotone and continuous, then ϕ is monotone.

(ii) If ϕ ∈ C∗\{0}, then ϕ is strictly monotone; ϕ ∈ C∗, then ϕ is monotone.

Lemma 2.1 [9] Let C be a closed convex pointed cone with int C 	= Ø. Then, for fixed
e ∈ int C,

B∗ = {l ∈ C∗ : l(e) = 1}
is a w∗-compact base of C∗.

Remark 2.2
(1) Below, we list some examples of cones with nonempty interiors.

Example 2.1
(i) Let Y = Rn, C1 = {x = (x1, x2, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}.

Then, int C1 = {x = (x1, x2, . . . , xn) ∈ Rn : xi > 0, i = 1, 2, . . . , n}.
(ii) Let Y = C(G), where G ⊂ Rn is a bounded closed set, let C2 = {x ∈ C(G) :

x(t) ≥ 0,∀t ∈ G}. Then, int C2 = {x ∈ C(G) : x(t) > 0,∀t ∈ G}.
(iii) Let Y = L∞(�), where � ⊂ Rn, 0 < mes� < ∞, let C3 = {x ∈ L∞(�) :

x(t) ≥ 0,∀ a.e. t ∈ �}. Then, intC3 	= Ø.
(iv) Let Y = l∞ = {x = (x1, x2, . . . , xi , . . .) : supi≥1 |xi | < ∞}, C4 = {x =

(x1, x2, . . . , xi , . . .) ∈ l∞ : xi ≥ 0, i = 1, 2, . . .}. Then, int C4 	= Ø.

(2) There exist cones with empty interiors as given in following example.

Example 2.2
(i) Let Y = L p(�), where � ⊂ Rn, 0 < mes� < ∞, 1 ≤ p < ∞, let C5 = {x ∈

L p(�) : x(t) ≥ 0,∀ a.e. t ∈ �}. Then, int C5 =Ø.
(ii) Let Y = l p, 1 ≤ p < ∞, C6 = {x = (x1, x2, . . . , xi , . . .) ∈ l p : xi ≥ 0, i =

1, 2, . . .}. Then, int C6 = Ø.

(3) In [16], Qiu obtained some criteria for checking whether or not convex cones are having
nonempty interiors in various kinds of locally convex spaces.

Throughout this paper, unless otherwise specified, we always assume e ∈ int C is a fixed
element in Y and B∗ = {l ∈ C∗ : l(e) = 1}.
Lemma 2.2 Let C be a closed convex pointed cone with int C 	= Ø. Then,

C = {y ∈ Y : l(y) ≥ 0, ∀l ∈ B∗},
and

int C = {y ∈ Y : l(y) > 0, ∀l ∈ B∗}.

123



4 J Glob Optim (2010) 47:1–12

Proof Since C is a closed convex pointed cone with int C 	= Ø, by Lemma 3.21 in [8], we
have C = {y ∈ Y : l(y) ≥ 0,∀l ∈ C∗} and int C = {y ∈ Y : l(y) > 0,∀l ∈ C∗\{0}}.
Further, since B∗ is a w∗-compact base of C∗ by Lemma 2.1, we get

C = {y ∈ Y : l(y) ≥ 0,∀l ∈ B∗} and int C = {y ∈ Y : l(y) > 0,∀l ∈ B∗}.
The following real-valued function plays an important role in many areas of vector opti-

mization problems. �
Definition 2.2 [14] For fixed e ∈ int C and q ∈ Y , Tammer function he(·, q) : Y → R is
defined by:

he(y, q) = inf{t ∈ R : y ∈ te + q − C}, y ∈ Y.

Tammer function he(·, q) has the following salient properties.

Lemma 2.3 [14,19] For fixed e ∈ int C and any q ∈ Y , we have

(i) he(y, q) < t ⇔ y ∈ te + q − int C;
(ii) he(y, q) ≤ t ⇔ y ∈ te + q − C; and

(iii) he(·, q) is a continuous convex function on Y and strictly monotone.

Following the idea of Proposition 2.2 in [2], we obtain the following result.

Lemma 2.4 Let B∗ = {l ∈ C∗ : l(e) = 1}, where e ∈ int C. Then, for any q ∈ Y ,

he(y, q) = max{l(y) − l(q) : l ∈ B∗} = l0(y − q), y ∈ Y,

where l0 = l0(y, q) ∈ B∗.

Proof Since he(y, q) = inf{t ∈ R : y ∈ te+q −C} and C is closed, y ∈ he(y, q)e+q −C .
So, by Lemma 2.2, we obtain

l(he(y, q)e + q − y) ≥ 0, ∀l ∈ B∗.

This implies that he(y, q) ≥ l(y − q),∀l ∈ B∗, resulting in

he(y, q) ≥ sup{l(y) − l(q) : l ∈ B∗}. (1)

Conversely, let t0 = sup{l(y) − l(q) : l ∈ B∗}. Then

l(y) − l(q) ≤ t0 = t0l(e), ∀l ∈ B∗.

Note that l is linear, so l(y − q − t0e) ≤ 0,∀l ∈ B∗. By Lemma 2.2 again, we have y ∈
t0e + q − C . From the definition of he, we get

t0 ≥ he(y, q) = inf{t ∈ R : y ∈ te + q − C}.
This together with (1) yields

he(y, q) = sup{l(y) − l(q) : l ∈ B∗}.
Further, since B∗ is a w∗-compact set and for any fixed y, q, l(y − q) : Y ∗ → R is w∗-
continuous, there exists l0 = l0(y, q) ∈ B∗ such that

sup{l(y) − l(q) : l ∈ B∗} = max{l(y) − l(q) : l ∈ B∗} = l0(y − q).

The proof is complete. �
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Remark 2.3 Let Y = Rn, C = {x = (x1, x2, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}, and
e = (e1, e2, . . . , en) ∈ int C and q = (q1, q2, . . . , qn) ∈ Y . Then, the function he(·, q) may
be written as

he(y, q) = max

{
yi − qi

ei
: 1 ≤ i ≤ n

}

, ∀y = (y1, y2, . . . , yn).

Lemma 2.5 [12] For fixed e ∈ int C, he(·, ·) is continuous on Y × Y . Next, we recall some
well known results and concepts concerning set-valued functions.

Let A ⊆ X be a nonempty subset and F : A −→ 2Y a set-valued function with nonempty
values (i.e., ∀x ∈ A, F(x) 	= Ø ). F is called upper semicontinuous at x0 ∈ A if for every
neighborhood V containing F(x0), there is a neighborhood U of x0 such that

F(x) ⊆ V, ∀x ∈ U.

F is upper semicontinuous if F is upper semicontinuous at every point x ∈ A.

Definition 2.3 [14] Let C be a closed convex cone. F is called C-upper semicontinuous at
x0 ∈ A if for every neighborhood V containing F(x0), there is a neighborhood U of x0 such
that

F(x) ⊆ V + C, ∀x ∈ U.

Definition 2.4 [15] Let A ⊆ X be a nonempty convex subset. F : A −→ 2Y is said to be
quasiconvex if for every a ∈ Y , the level set of F at a:

levF (a) = {x ∈ A : there is y ∈ F(x) such that y ≤ a}
is convex.

Remark 2.4
(i) If F is single-valued and Y is a topological lattice, in which the lattice order is gener-

ated by a closed pointed convex cone. For any y1, y2 ∈ Y , let sup{y1, y2} denote the
supremum of y1, y2. A single valued function F : A → Y is said to be quasiconvex,
if for any x1, x2 ∈ A, t ∈ [0, 1], we have

F(t x1 + (1 − t)x2) ∈ sup{F(x1), F(x2)} − C.

(ii) Suppose, for a special case, that Y = Rn , and C = Rn+. A single valued function
F = ( f1, f2, . . . , fn) : A → Y is quasiconvex if and only if every fi , i = 1, 2, . . . , n,
is quasiconvex in the usual sense, i.e., for any x1, x2 ∈ A, t ∈ [0, 1],

fi (t x1 + (1 − t)x2) ≤ max{ fi (x1), fi (x2)}.
Example 2.3 Let Y = l∞ = {x = (x1, x2, . . . , xi , . . .) : supi≥1 |xi | < ∞}, C = {x =
(x1, x2, . . . , xi , . . .) ∈ l∞ : xi ≥ 0, i = 1, 2, . . .} and A = R+. F : A → 2Y is defined by

F(x) =
{(

x,
x

2
, . . . ,

x

n
, . . .

)
,

(

−x,
−x

2
, . . . ,

−x

n
, . . .

)}

, ∀x ∈ A.

Then, F is a quasiconvex set-valued function.
In fact, we only need to check, for any a = (a1, a2, . . . , ai , . . .) ∈ Y , if

levF (a) = {x ∈ A : there exists y ∈ F(x) such that y ≤ a}
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is convex. Without loss of generality, we assume that levF (a) 	= Ø, let x1, x2 be any two
points of the above level set and λ ∈ (0, 1). Noting that x1, x2 ≥ 0, by the definition of F ,
we assume that −x1

n ≤ an, −x2
n ≤ an, n = 1, 2, . . ., then we have

−λx1 + (1 − λ)x2

n
= λ

(−x1

n

)

+ (1 − λ)

(−x2

n

)

≤ λan + (1 − λ)an = an, n = 1, 2, . . . .

This shows that λx1 + (1 − λ)x2 ∈ levF (a). It is completed the proof. �
Remark 2.5 In general, suppose that F is quasiconvex, and that φ is monotone and convex.
Then, it is not necessary for φF to be quasiconvex as shown in [14]. But, we have the
following useful result.

Lemma 2.6 Let A ⊆ X be a nonempty convex subset and F be quasiconvex set-valued map.
Then for any q ∈ Y, he F is also quasiconvex.

Proof For any q ∈ Y , we have to check, for any t0 ∈ R, if

levhF (t0) = {x ∈ A : there exists t ∈ he(F(x), q) such that t ≤ t0}
is convex. Without loss of generality, we assume that levhF (t0) 	= Ø, let x1, x2 be any two
points of the above level set and λ ∈ (0, 1). Then there exist yi ∈ F(xi ) with ti = he(yi , q) ≤
t0, i = 1, 2. Since C is closed,

yi ∈ q + ti e − C, i = 1, 2.

Noticing that ti = he(yi , q) ≤ t0, by Lemma 2.3, we have yi ≤ q + t0e, i = 1, 2. By
the quasiconvexity of F , there is a yλ ∈ F(λx1 + (1 − λ)x2) such that yλ ≤ q + t0e, i.e.,
yλ ∈ q + t0e − C . This implies that he(yλ, q) ≤ t0. Therefore, λx1 + (1 − λ)x2 ∈ levhF (t0).
The proof is complete. �
Remark 2.6 Lemma 2.6 is different from Proposition 2.3 in [15] in the following aspects:

(i) The condition that the set-valued function is compact valued is removed; and
(ii) the order in Y is given by C .

Remark 2.7 It is worthwhile noticing that the property (ii) of Lemma 2.3 plays an important
role.

Now, we consider the following vector optimization problem with set-valued functions:

(VP) min
x∈A

F(x).

Definition 2.5 Let e ∈ int C be fixed element, ε ≥ 0, xε ∈ A is called an εe-weak efficient
solution for (VP), written as xε ∈ WAE(F, A, C, εe), if there exists yε ∈ F(xε) such that

F(A) ∩ (yε − εe − int C) = Ø.

Remark 2.8
(i) If ε = 0, the definition of εe-weak efficient solution coincides with the definition

of weak efficient solution. In the sequel, the symbol WE(F, A, C) denotes the set of
weak efficient solutions for (VP).

(ii) When the set-valued function degenerates to vector-valued function in (VP), we have

Y = Rn, C = Rn+, e = (1, 1, . . . , 1) ∈ int C.

In this case, the definition of ε-weak minimum of (VP) in [3,4] coincides with the defi-
nition of εe-weak efficient solution in this paper.
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3 Characterization in terms of the scalarization

Now, consider the following set-valued scalar minimization problem induced by (VP).

(Pq) min
x∈A

he(F(x), q).

Definition 3.1 A point xε ∈ A is called an ε-approximate optimal solution of (Pq), written
as xε ∈ Sq(ε), if there exists a yε ∈ F(xε) such that

he(yε, q) − ε ≤ he(y, q), ∀x ∈ A, y ∈ F(x).

Proposition 3.1 For any q ∈ Y , we have

Sq(ε) ⊆ WAE(F, A, C, εe).

Proof Assume that there exists an x ∈ Sq(ε), but x 	∈ WAE(F, A, C, εe). Then for any
y ∈ F(x) there exist xy ∈ A and y′ ∈ F(xy) such that y′ ∈ y − εe − int C . Hence, by
Lemma 2.2, we have l(y′ − y + εe) < 0,∀l ∈ B∗. This implies

l(y′ − q) + ε < l(y − q), ∀l ∈ B∗. (2)

On the other hand, by Lemma 2.4, there exists a l0 ∈ B∗ such that he(y′, q) = l0(y′ − q).
Thus, by (2), we obtain

he(y′, q) = l0(y′ − q) < l0(y − q) − ε

≤ max{l(y − q) : l ∈ B∗} − ε

= he(y, q) − ε,

i.e., for any y ∈ F(x), there exists a y′ ∈ F(A) such that

he(y, q) − ε > he(y′, q),

which contradicts x ∈ Sq(ε). The proof is complete. �
Proposition 3.2 Assume that x ∈ WAE(F, A, C, εe). Then, there exists a q ∈ Y such that
x ∈ Sq(ε).

Proof Since x ∈ WAE(F, A, C, εe), there exists a y ∈ F(x) such that

F(A) ∩ (y − εe − int C) = Ø. (3)

By Lemma 2.2, for any l ∈ B∗, we have l(−int C) < 0. So, by (3), for any y ∈ F(A), we
obtain

l(y − y + εe) ≥ 0, ∀l ∈ B∗.

This implies

l(y − y) ≥ −ε, ∀l ∈ B∗.

By Lemma 2.4, we have

he(y, y) = max{l(y − y) : l ∈ B∗} ≥ −ε, ∀y ∈ F(A).

Note that he(y, y) = max{l(y − y) : l ∈ B∗} = 0. Thus, we have

he(y, y) − ε ≤ he(y, y), ∀y ∈ F(A).

That is, x ∈ Sy(ε). The proof is complete. �
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Utilizing Propositions 3.1 and 3.2, we immediately obtain the following theorem.

Theorem 3.1 Let ε ≥ 0, we have

WAE(F, A, C, εe) =
⋃

{Sq(ε) : q ∈ Y }.

Remark 3.1 Theorem 3.1 is different from Theorem 2.1 in [17]. We derive the scalar char-
acterization without imposing any convexity assumption on objective functions and feasible
set.

Below, we give the existence result of εe-weak efficient solution for (VP).
A subset M ⊆ Y is said to be C-bounded if there exists a y0 ∈ Y such that M ⊆ y0 + C .

Theorem 3.2 Let F(A) be C-bounded and ε > 0. Then WAE(F, A, C, εe) 	= Ø.

Proof Since F(A) be C-bounded, there exists a y0 ∈ Y such that

y ≥ y0, ∀y ∈ F(A).

On the other hand, by Lemma 2.3 and Remark 2.1, for q ∈ Y, he(·, q) is monotone, so we
have

he(y, q) ≥ he(y0, q), ∀y ∈ F(A).

Therefore, inf{he(y, q) : y ∈ F(A)} exists. By the definition of infimum, for ε > 0, there
exists a y ∈ F(A) such that

he(y, q) < inf{he(y, q) : y ∈ F(A)} + ε.

This shows that

he(y, q) − ε ≤ he(y, q), ∀y ∈ F(A). (4)

Since y ∈ F(A), there exists an x ∈ A with y ∈ F(x) and y satisfying (4). That is, x ∈ Sq(ε).
By Theorem 3.1, we have x ∈ WAE(F, A, C, εe). The proof is complete. �
Remark 3.2 From Theorem 3.2, we see that the existence conditions for approximate solu-
tions is very weak.

4 Relations between approximate solutions and weak efficient solutions

Proposition 4.1 If 0 ≤ ε1 ≤ ε2, then WAE(F, A, C, ε1e) ⊆ WAE(F, A, C, ε2e).

Proof For any x1 ∈ WAE(F, A, C, ε1e), by Theorem 3.1, there exists q ∈ Y with x1 ∈
Sq(ε1). Namely, there exists a y1 ∈ F(x1) such that

he(y1, q) − ε1 ≤ he(y, q), ∀y ∈ F(A). (5)

Note that ε1 ≤ ε2, it is clear from (5) that

he(y1, q) − ε2 ≤ he(y1, q) − ε1 ≤ he(y, q), ∀y ∈ F(A).

This means that x1 ∈ Sq(ε2). By Theorem 3.1 again, we have x1 ∈ WAE(F, A, C, ε2e). The
proof is complete. �
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Theorem 4.1 Let e ∈ int C. Then,
⋂

ε>0

WAE(F, A, C, εe) = WE(F, A, C).

Proof Firstly, we prove WE(F, A, C) ⊆ ⋂
ε>0 WAE(F, A, C, εe).

For any z ∈ WE(F, A, C), there exists a yz ∈ F(z) such that

F(A) ∩ (yz − int C) = Ø. (6)

If there exists an ε0 > 0 such that z 	∈ WAE(F, A, C, ε0e), then for any y ∈ F(z), there
exists y′ ∈ F(A) such that y′ − y + ε0e ∈ −int C . This implies that y′ ∈ y − ε0e −
int C ⊆ y − int C , which contradicts (6). Since z ∈ WE(F, A, C) is arbitrary, we have
WE(F, A, C) ⊆ ⋂

ε>0 WAE(F, A, C, εe).
Now, we prove

⋂
ε>0 WAE(F, A, C, εe) ⊆ WE(F, A, C).

Suppose that it is false. Then, there exist an x ∈ ⋂
ε>0 WAE(F, A, C, εe), but x 	∈ WE

(F, A, C). Then, for any y ∈ F(x), there exist xy ∈ A and y′ ∈ F(xy) such that y′ ∈ y−int C .
Thus, there exists d ∈ int C such that

− d = y′ − y ∈ F(A) − y. (7)

Since d ∈ int C , there exists an ε0 > 0 such that

d − ε0e ∈ int C. (8)

By (7), we have −d + ε0e ∈ F(A) − y + ε0e. This together with (8) yields

(F(A) − y + ε0e) ∩ (−int C) 	= Ø.

This shows that x 	∈ WAE(F, A, C, ε0e), which contradicts x ∈ ⋂
ε>0 WAE(F, A, C, εe).

The proof is complete. �
Remark 4.1 Theorem 4.1 generalizes and improves the corresponding result of Dutta and
Vetrivel (see [4, Proposition 2.1]). In particular, in several directions as indicated below.

(1) The setting of Rn is generalized to locally convex space.
(2) The condition that the objective function is convex is removed;
(3) the vector-valued function is extended to set-valued function.

Theorem 4.2 Let ε ≥ 0, let (εn)n∈� be positive numbers converging to ε, let A be closed
and let F : A −→ 2Y be a C-upper semicontinuous set-valued function. Then,

lim sup WAE(F, A, C, εne) ⊆ WAE(F, A, C, εe),

where lim sup WAE(F, A, C, εne) = {x ∈ A : there exists a subnet {xm} such that xm ∈
WAE(F, A, C, εme) and xm → x}.
Proof Assume that there exists an x ∈ lim sup WAE(F, A, C, εne), but x 	∈ WAE(F, A,

C, εe). Then, for any y ∈ F(x) there exist xy ∈ A and y′ ∈ F(xy) such that y′ − y + εe ∈
−int C . Namely, y ∈ y′ + εe + int C . y ∈ F(x) is arbitrary, we have

F(x) ⊆ F(A) + εe + int C.

Since F(A)+ εe + int C is open and F is C-upper semicontinuous, there exists a neighbor-
hood N (x) of x such that

F(N (x)) ⊆ F(A) + εe + int C + C ⊆ F(A) + εe + int C. (9)
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10 J Glob Optim (2010) 47:1–12

Note that x ∈ lim sup WAE(F, A, C, εne). Thus, there exists a subnet {xm}m∈�′⊆� such that
xm ∈ WAE(F, A, C, εme) and xm → x . So, there is a τ0 ∈ �′ such that

xm ∈ N (x), m ≥ τ0.

This together with (9) yields

F(xm) ⊆ F(A) + εe + int C.

Then, for any z ∈ F(xm), there exist y′ ∈ F(A), d ∈ int C such that

z = y′ + εe + d. (10)

Observe that d ∈ int C . Then, there is a neighborhood U of zero such that

d + U ⊆ int C.

Since εn → ε, (ε − εm)e → 0. Thus, there exists a τ1 ∈ � such that

(ε − εm)e ∈ U, m ≥ τ1.

and hence

d + (ε − εm)e ∈ int C, m ≥ τ1. (11)

Therefore, for any z ∈ F(xm), by (10) and (11), we have

z = y′ + εe + d

= y′ + εme + (ε − εm)e + d

⊆ F(A) + εme + int C, m ≥ τ1, m ≥ τ0.

This shows that (z − εme − int C) ∩ F(A) 	= Ø, ∀z ∈ F(xm), which contradicts xm ∈
WAE(F, A, C, εme). The proof is complete. �
Remark 4.2 Theorem 4.2 generalizes and improves the corresponding result of Deng (see [3,
Proposition 1]). In particular, in several directions as indicated below.

(1) The setting of Rn is generalized to locally convex space.
(2) The condition that the objective function is convex is removed.
(3) The vector-valued function is extended to set-valued function.

5 Connectedness of approximate solution set

Lemma 5.1 [7] Let M ⊆ X be a nonempty connected set and let H : M −→ 2Y be an
upper semicontinous set-valued function with nonempty connected value. Then, H(M) is
connected.

Lemma 5.2 Assume that A ⊆ X is a nonempty convex subset and that F : A −→ 2Y is a
quasiconvex set-valued function. Then, for any q ∈ Y and ε ≥ 0, Sq(ε) is convex.

Proof Let xi ∈ Sq(ε), i = 1, 2, t ∈ (0, 1). Then, there exists a yi ∈ F(xi ) such that

he(yi , q) − ε ≤ he(y, q), ∀y ∈ F(A). (12)

Denoting rq = inf{he(y, q) : y ∈ F(A)}, by (12), we have

he(yi , q) ≤ rq + ε, i = 1, 2. (13)
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Since F is quasiconvex, it follow from Lemma 2.6 that for q ∈ Y, he F is also quasiconvex.
Hence, the level set

levhe F (rq + ε) = {x ∈ A : there exists t ∈ he(F(x), q) such that t ≤ rq + ε}
is convex. By (13), we have xi ∈ levhF (rq+ε). Consequently, λx1+(1−λ)x2∈levhe F (rq+ε).
This implies that there exists a y ∈ F(λx1 + (1 − λ)x2) such that

he(y, q) ≤ rq + ε,

i.e.,

he(y, q) − ε ≤ rq ≤ he(y, q), ∀y ∈ F(A).

This together with y ∈ F(λx1 + (1 − λ)x2) yields λx1 + (1 − λ)x2 ∈ Sq(ε). The proof is
complete. �
For ε ≥ 0, define the following set-valued function:

G : Y → 2A, where G(q) = Sq(ε), q ∈ Y.

Lemma 5.3 Let A ⊆ X be a nonempty compact subset and let F : A −→ 2Y be an upper
semicontinuous set-valued function with compact value. Then, G is upper semicontinuous
on Y .

Proof Assuming that G is not upper semicontinuous on Y . Then, there exist q0 ∈ Y and
a neighborhood N (G(q0)) of G(q0) such that for any V ∈ N (0) (where N (0) denote the
neighborhood base of zero in Y ), there exists a qV ∈ q0 + V with

G(qV ) 	⊆ N (G(q0)). (14)

It is clear that qV → q0. By (14) there exists an xV ∈ G(qV ) such that xV 	∈ N (G(q0)).
Since xV ∈ G(qV ) = SqV (ε), there is a yV ∈ F(xV ) such that

he(yV , qV ) − ε ≤ he(y, qV ), ∀y ∈ F(A) (15)

Since A is a nonempty compact subset and F : A −→ 2Y is an upper semicontinuous
set-valued function with compact value, it is clear from Proposition 11 in [1], then F(A) is
compact. Without loss of generality, we can assume that yV → y ∈ F(A), xV → x ∈ A.
Moreover, by Proposition 7 in [1], F is closed, hence y ∈ F(x). Further, by Lemma 2.5,
he(·, ·) is continuous on Y × Y , taking limit in (15), we have

he(y, q0) − ε ≤ he(y, q0), ∀y ∈ F(A).

This together with y ∈ F(x) yields x ∈ Sq0(ε) = G(q0) which contradicts xV 	∈ N (G(q0)).
This completes the proof.

�
Theorem 5.1 Assume that A ⊆ X is a nonempty compact convex subset and that F : A −→
2Y is a upper semicontinuous quasiconvex set-valued function with compact value. Then, for
ε ≥ 0, WAE(F, A, C, εe) is connected.

Proof For ε ≥ 0 and any q ∈ Y , since A ⊆ X is a convex subset and F : A −→ 2Y is
a quasiconvex set-valued function, it is clear from Lemma 5.2 that Sq(ε) is convex. Hence,
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Sq(ε) is connected. Moreover, it follows from Lemma 5.3 that G is upper semicontinuous on
Y . Thus,

⋃
{G(q) : q ∈ Y } =

⋃
{Sq(ε) : q ∈ Y }

is connected by Lemma 5.1. On the other hand, by Theorem 3.1, we have WAE(F, A, C, εe) =⋃{Sq(ε) : q ∈ Y }. Consequently, WAE(F, A, C, εe) is connected. The proof is complete.
�
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